今天是什么甲子| 赤诚相见是什么意思| 乙酰胆碱的作用是什么| 尿隐血弱阳性是什么意思| 鬼压床是什么| 谭咏麟为什么叫校长| 三伏天吃什么对身体好| 去医院查怀孕挂什么科| 蚕蛹吃什么| 急性盆腔炎有什么症状表现呢| 肝郁症是什么病| 晚上多梦是什么原因| 抗糖是什么意思| 豆面是什么| 宫颈囊肿有什么症状表现| 怀孕哭对宝宝有什么影响| 渐入佳境什么意思| 在什么地方| 口干舌燥是什么病的前兆| 射精什么意思| 虎眼石五行属什么| 试纸一深一浅说明什么| 龙眼有什么品种| 释然什么意思| 火疖子用什么药膏| 红色药片一般是什么药| 脑心通主治什么病| 运动后喝什么水最好| 发烧流鼻血是什么原因| 人为什么会长痔疮| 阿托伐他汀治什么病| 青绿色是什么颜色| 为什么脚会脱皮| 1941年是什么年| pet-ct检查主要检查什么| 肝内强回声是什么意思| 吃过敏药有什么副作用| 双肺纤维条索是什么意思| 思维是什么意思| 鼠五行属什么| 脑血管痉挛吃什么药| 一个人是什么歌| jm是什么| 什么是血铅| 玉仁玫白膏有什么功效| 喝菊花有什么好处| 总做噩梦是什么原因| 法身是什么意思| 胆挂什么科| tc是什么意思| 剪切是什么意思| 经常勃起是什么原因| 药师是干什么的| 一直咳嗽是什么原因| 薄如蝉翼是什么意思| 角是什么结构| 六角龙吃什么食物| 入殓师是干什么的| 什么的灵魂| 粉蒸肉的粉是什么粉| 急支糖浆是什么梗| 高血压吃什么药| 梦到门牙掉了是什么意思| 足字旁的字和什么有关| 代血浆又叫什么| 什么是对比色| 肠胃不好可以吃什么水果| 值神天刑是什么意思| 排毒吃什么最好能排脸上毒| 肝肿瘤不能吃什么| 痔疮是什么原因引起的| 神父和修女是什么关系| 饵丝是什么| 生理需求是什么意思| 月经来了有血块是什么原因| 有什么瓜| 血卡是什么| 支原体和衣原体有什么区别| 护理是什么| 9月28号什么星座| 什么的哭| 眉心中间有痣代表什么| 安宫牛黄丸有什么作用| 早上起床牙龈出血是什么原因| 尿常规能检查出什么| 口食读什么| 抑郁到什么程度要吃氟西汀| 草鱼吃什么草| air是什么意思| 梦见好多水是什么预兆| 粉色分泌物是什么原因| 夜晚咳嗽是什么原因| 双11是什么节日| 肥胖去医院挂什么科| 切除扁桃体有什么好处和坏处| 做完人流可以吃什么| 脸黄是什么原因造成的| 儿童贫血有什么症状表现| 高压高是什么原因| 驴血是什么颜色| 天朝是什么意思| 宋字五行属什么| 一月17号是什么星座| 辰龙是什么意思| 尿蛋白高是什么原因引起的| 喝碱性水有什么好处| 喝椰子汁有什么好处| 蜥蜴人是什么| o型血和a型血生的孩子是什么血型| 同房后需要注意什么| 金火什么字| 枸橼酸西地那非片有什么副作用| 身体发抖是什么病| 梦见杀人是什么意思| 红红的枫叶像什么| 三班两倒是什么意思| 肺火吃什么药| 蜜饯是什么东西| 三天不打上房揭瓦的下一句是什么| 静电对人体有什么危害| 千古一帝指什么生肖| 什么是胰岛素抵抗| 胸口闷挂什么科| 五味子有什么功效| 表虚自汗是什么意思| 过敏性紫癜不能吃什么| 鳞状上皮是什么意思| 倒挂金钩是什么意思| 药流可以吃什么水果| 6月30号是什么星座| 饮料喝多了有什么危害| 做爱都有什么姿势| 什么食物容易消化| 牛黄是什么东西| 梅长苏是什么电视剧| 火烧是什么食物| 绿茶用什么茶具泡好| 地龙是什么生肖| sph是什么意思| 膝盖疼痛用什么药| 痔疮肛瘘是什么症状| 金是什么结构的字| 气管炎吃什么药| 叶公好龙是什么生肖| 孤枕难眠什么意思| 社会是什么| 牛肉和什么炒| 梦见收稻谷有什么预兆| 口腔溃疡吃什么好得快| 咳嗽呕吐是什么原因| 北京的区长是什么级别| 便秘吃什么能马上排便| 拍肺部ct挂什么科| 入职是什么意思| 木耳属于什么类| 小米粥和什么搭配最好最养胃| 突然流鼻血是什么原因| 伤口消毒用什么| 常吃南瓜有什么好处和坏处| 上午十点到十一点是什么时辰| 厥阴病是什么意思| 怎么知道自己五行缺什么| 黄豆煲汤搭配什么最好| 豆沙馅可以做什么美食| 血气分析是检查什么的| 吃藕粉对身体有什么好处| 伤口不结痂是什么原因| 90岁叫什么| 牡丹花什么颜色| 做梦笑醒了有什么征兆| b2驾照能开什么车| 金酒是什么酒| 月经失调是什么意思| 四六风是什么病| 点了斑不能吃什么| 梦见戴帽子是什么预兆| 码是什么单位| 菠萝蜜什么味道| 恒心是什么意思| 斜视手术有什么后遗症和风险| b是什么牌子| 吃完龙虾不能吃什么| 醍醐灌顶什么意思| 倾向是什么意思| 腿抖是什么病的预兆| 医院康复科是干什么的| 马赛克什么意思| 除湿气吃什么好| 水蛭是什么动物| 月下老人什么意思| 鼻子干痒是什么原因| 今天是什么纪念日| 什么毛什么血| 肝内低回声区是什么意思| 全光谱是什么意思| 生男孩女孩取决于什么| 丙肝是什么| 抗心磷脂抗体是什么意思| 京东积分有什么用| 做什么菜适合放胡椒粉| 腿部青筋明显是什么原因| 三月什么星座| mu是什么意思| 腋下皮肤发黑是什么原因引起的| 阴虱有什么症状| 半衰期是什么意思| 张国立老婆叫什么名字| 官方旗舰店和旗舰店有什么区别| 揉肚子有什么好处| 为什么加油站不能打电话| 胃疼吃什么药好得最快最有效| 小厮是什么意思| 胎盘粘连是什么原因造成的| 紫米和小米什么关系| 为什么会长口腔溃疡的原因| 正月十九是什么日子| 安睡裤是什么| 精忠报国是什么意思| 眼有眼屎是什么原因| 嗓子不舒服吃什么消炎药| 什么样的牙齿需要矫正| 相宜的意思是什么| 什么颜什么色| 电解水是什么水| 梦到蛇什么意思| 活在当下什么意思| 自身免疫性肝病是什么意思| 腿为什么会抽筋| 房颤什么症状| 刚是什么意思| 什么样的人容易得心梗| 什么是轻断食| 网球肘用什么膏药效果好| 肺气肿是什么| 七月份有什么节日吗| prn是什么医嘱| 眼睛突然红了是什么原因| 愤是什么生肖| 小姨是什么| 莹五行属性是什么| 颞下颌关节紊乱挂什么科| rpe是什么意思| 鹭鸶是什么动物| 尿白细胞定量高是什么意思| 空五行属什么| 小茴香是什么| 什么地方| 鱼油是什么| 报工伤需要什么材料| 荨麻疹是由什么引起的| 睡觉爱流口水是什么原因| 枣庄古代叫什么| 火同念什么| 滋润是什么意思| 蓝色妖姬的花语是什么| 矢量是什么意思| 硬不起吃什么药| 吃百家饭是什么意思| 吃小米粥有什么好处和坏处| 属鸡和什么属相相克| 失眠是什么引起的| 和尚代表什么生肖| 日本为什么投降| 胃下垂吃什么药最好| 百度
Skip to content

GoogleCloudPlatform/professional-services-data-validator

Data Validation Tool

The Data Validation Tool is an open sourced Python CLI tool based on the Ibis framework that compares heterogeneous data source tables with multi-leveled validation functions.

Data validation is a critical step in a data warehouse, database, or data lake migration project where data from both the source and the target tables are compared to ensure they are matched and correct after each migration step (e.g. data and schema migration, SQL script translation, ETL migration, etc.). The Data Validation Tool (DVT) provides an automated and repeatable solution to perform this task.

DVT supports the following validations:

  • Column validation (count, sum, avg, min, max, stddev, group by)
  • Row validation (Not supported for FileSystem connections)
  • Schema validation
  • Custom Query validation
  • Ad hoc SQL exploration

DVT supports the following connection types:

The Connections page provides details about how to create and list connections for the validation tool.

Disclaimer

This is not an officially supported Google product. Please be aware that bugs may lurk, and that we reserve the right to make small backwards-incompatible changes. Feel free to open bugs or feature requests, or contribute directly (see CONTRIBUTING.md for details).

Installation

The Installation page describes the prerequisites and setup steps needed to install and use the Data Validation Tool.

Usage

Before using this tool, you will need to create connections to the source and target tables. Once the connections are created, you can run validations on those tables. Validation results can be printed to stdout (default) or outputted to BigQuery (recommended). DVT also allows you to save and edit validation configurations in a YAML or JSON file. This is useful for running common validations or updating the configuration.

Managing Connections

Before running validations, DVT requires setting up a source and target connection. These connections can be stored locally or in a GCS directory. To create connections, please review the Connections page.

Running Validations

The CLI is the main interface to use this tool and it has several different commands which can be used to create and run validations. DVT is designed to run in an environment connected to GCP services, specifically, BigQuery, GCS and Secret manager. If DVT is being run on-premises or in an environment with restricted access to GCP services, see running DVT at on-prem. Below are the command syntax and options for running validations.

Alternatives to running DVT in the CLI include deploying DVT to Cloud Run, Cloud Functions, or Airflow (Examples Here). See the Validation Logic section to learn more about how DVT uses the CLI to generate SQL queries.

Note that we do not support nested or complex columns for column or row validations.

Column Validations

Below is the command syntax for column validations. To run a grouped column validation, simply specify the --grouped-columns flag.

You can specify a list of string columns for aggregations in order to calculate an aggregation over the length(string_col). Similarly, you can specify timestamp/date columns for aggregation over the unix_seconds(timestamp_col). Running an aggregation over all columns ('*') will only run over numeric columns, unless the --wildcard-include-string-len or --wildcard-include-timestamp flags are present.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  validate column
  --source-conn or -sc SOURCE_CONN
                        Source connection details
                        See: *Data Source Configurations* section for each data source
  --target-conn or -tc TARGET_CONN
                        Target connection details
                        See: *Connections* section for each data source
  --tables-list or -tbls SOURCE_SCHEMA.SOURCE_TABLE=TARGET_SCHEMA.TARGET_TABLE
                        Comma separated list of tables in the form schema.table=target_schema.target_table. Or shorthand schema.* for all tables.
                        Target schema name and table name are optional.
                        i.e 'bigquery-public-data.new_york_citibike.citibike_trips'
  [--grouped-columns or -gc GROUPED_COLUMNS]
                        Comma separated list of columns for Group By i.e col_a,col_b
  [--count COLUMNS]     Comma separated list of columns for count or * for all columns
  [--sum COLUMNS]       Comma separated list of columns for sum or * for all numeric
  [--min COLUMNS]       Comma separated list of columns for min or * for all numeric
  [--max COLUMNS]       Comma separated list of columns for max or * for all numeric
  [--avg COLUMNS]       Comma separated list of columns for avg or * for all numeric
  [--std COLUMNS]       Comma separated list of columns for stddev_samp or * for all numeric.
                        Please note that not all supported SQL engines give results from STDDV_SAMP (or engine specific equivalent) that
                        are comparable across all other supported SQL engines. This option may produce unreliable results.
  [--exclude-columns or -ec]
                        Flag to indicate the list of columns provided should be excluded and not included.
  [--result-handler or -rh CONNECTION_NAME.SCHEMA.TABLE or BQ_PROJECT_ID.DATASET.TABLE]
                        Specify a BigQuery or PostgreSQL connection name as destination for validation results.
                        Also supports legacy BigQuery format BQ_PROJECT_ID.DATASET.TABLE.
                        See: *Validation Reports* section
  [--bq-result-handler or -bqrh PROJECT_ID.DATASET.TABLE or CONNECTION_NAME.DATASET.TABLE]
                        This option has been deprecated and will be removed in a future release.
  [--service-account or -sa PATH_TO_SA_KEY]
                        Service account to use for BigQuery result handler output.
  [--wildcard-include-string-len or -wis]
                        If flag is present, include string columns in aggregation as len(string_col)
  [--wildcard-include-timestamp or -wit]
                        If flag is present, include timestamp/date columns in aggregation as unix_seconds(ts_col)
  [--cast-to-bigint or -ctb]
                        If flag is present, cast all int32 columns to int64 before aggregation
  [--filters SOURCE_FILTER:TARGET_FILTER]
                        Colon separated string values of source and target filters.
                        If target filter is not provided, the source filter will run on source and target tables.
                        See: *Filters* section
  [--config-file or -c CONFIG_FILE]
                        YAML Config File Path to be used for storing validations and other features. Supports GCS and local paths.
                        See: *Running DVT with YAML Configuration Files* section
  [--config-file-json or -cj CONFIG_FILE_JSON]
                        JSON Config File Path to be used for storing validations only for application purposes.
  [--threshold or -th THRESHOLD]
                        Float value. Maximum pct_difference allowed for validation to be considered a success. Defaults to 0.0
  [--labels or -l KEY1=VALUE1,KEY2=VALUE2]
                        Comma-separated key value pair labels for the run.
  [--format or -fmt FORMAT]
                        Format for stdout output. Supported formats are (text, csv, json, table). Defaults to table.
  [--filter-status or -fs STATUSES_LIST]
                        Comma separated list of statuses to filter the validation results. Supported statuses are (success, fail). If no list is provided, all statuses are returned.

The default aggregation type is a 'COUNT *', which will run in addition to the validations you specify. To remove this default, use YAML configs.

The Examples page provides many examples of how a tool can be used to run powerful validations without writing any queries.

Row Validations

(Note: Row hash validation not supported for FileSystem connections. In addition, please note that SHA256 is not a supported function on Teradata systems. If you wish to perform this comparison on Teradata you will need to deploy a UDF to perform the conversion.)

Below is the command syntax for row validations. In order to run row level validations we require unique columns to join row sets, which are either inferred from the source/target table or provided via the --primary-keys flag, and either the --hash, --concat or --comparison-fields flags. See Primary Keys section.

The --comparison-fields flag specifies the values (e.g. columns) whose raw values will be compared based on the primary key join. The --hash flag will run a checksum across specified columns in the table. This will include casting to string, sanitizing the data (ifnull, rtrim, upper), concatenating, and finally hashing the row.

Under the hood, row validation uses Calculated Fields to apply functions such as IFNULL() or RTRIM(). These can be edited in the YAML or JSON config file to customize your row validation.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  validate row
  --source-conn or -sc SOURCE_CONN
                        Source connection details
                        See: *Data Source Configurations* section for each data source
  --target-conn or -tc TARGET_CONN
                        Target connection details
                        See: *Connections* section for each data source
  --tables-list or -tbls SOURCE_SCHEMA.SOURCE_TABLE=TARGET_SCHEMA.TARGET_TABLE
                        Comma separated list of tables in the form schema.table=target_schema.target_table
                        Target schema name and table name are optional.
                        i.e 'bigquery-public-data.new_york_citibike.citibike_trips'
  --comparison-fields or -comp-fields FIELDS
                        Comma separated list of columns to compare. Can either be a physical column or an alias
                        See: *Calculated Fields* section for details
  --hash COLUMNS        Comma separated list of columns to hash or * for all columns
  --concat COLUMNS      Comma separated list of columns to concatenate or * for all columns (use if a common hash function is not available between databases)
  --max-concat-columns INT, -mcc INT
                        Maximum number of columns used in one --hash or --concat validation. When there are more columns in the validation, the validation will be split into multiple validations. There are engine specific defaults, so most users do not need to use this option unless they encounter errors.
  [--primary-keys PRIMARY_KEYS, -pk PRIMARY_KEYS]
                        Comma separated list of primary key columns, when not specified the value will be inferred
                        from the source or target table if available.  See *Primary Keys* section
  [--exclude-columns or -ec]
                        Flag to indicate the list of columns provided should be excluded from hash or concat instead of included.
  [--result-handler or -rh CONNECTION_NAME.SCHEMA.TABLE or BQ_PROJECT_ID.DATASET.TABLE]
                        Specify a BigQuery or PostgreSQL connection name as destination for validation results.
                        Also supports legacy BigQuery format BQ_PROJECT_ID.DATASET.TABLE.
                        See: *Validation Reports* section
  [--bq-result-handler or -bqrh PROJECT_ID.DATASET.TABLE or CONNECTION_NAME.DATASET.TABLE]
                        This option has been deprecated and will be removed in a future release.
  [--service-account or -sa PATH_TO_SA_KEY]
                        Service account to use for BigQuery result handler output.
  [--filters SOURCE_FILTER:TARGET_FILTER]
                        Colon separated string values of source and target filters.
                        If target filter is not provided, the source filter will run on source and target tables.
                        See: *Filters* section
  [--config-file or -c CONFIG_FILE]
                        YAML Config File Path to be used for storing validations and other features. Supports GCS and local paths.
                        See: *Running DVT with YAML Configuration Files* section
  [--config-file-json or -cj CONFIG_FILE_JSON]
                        JSON Config File Path to be used for storing validations only for application purposes.
  [--labels or -l KEY1=VALUE1,KEY2=VALUE2]
                        Comma-separated key value pair labels for the run.
  [--format or -fmt FORMAT]
                        Format for stdout output. Supported formats are (text, csv, json, table). Defaults to table.
  [--use-random-row or -rr]
                        Finds a set of random rows of the first primary key supplied.
  [--random-row-batch-size or -rbs]
                        Row batch size used for random row filters (default 10,000).
  [--filter-status or -fs STATUSES_LIST]
                        Comma separated list of statuses to filter the validation results. Supported statuses are (success, fail). If no list is provided, all statuses are returned.
  [--case-insensitive-match, -cim]
                        Performs a case insensitive match by adding an UPPER() before comparison.

Generate Partitions for Large Row Validations

When performing row validations, Data Validation Tool brings each row into memory and can run into MemoryError. Below is the command syntax for generating partitions in order to perform row validations on large dataset (table or custom-query) to alleviate MemoryError. Each partition contains a range of primary key(s) and the ranges of keys across partitions are distinct. The partitions have nearly equal number of rows. See Primary Keys section

The command generates and stores multiple YAML validations each representing a chunk of the large dataset using filters (WHERE primary_key(s) >= X AND primary_key(s) < Y) in YAML files. The parameter parts-per-file, specifies the number of validations in one YAML file. Each yaml file will have parts-per-file validations in it - except the last one which will contain the remaining partitions (i.e. parts-per-file may not divide partition-num evenly). You can then run the validations in the directory serially (or in parallel in multiple containers, VMs) with the data-validation configs run --config-dir PATH command as described here.

The command takes the same parameters as required for Row Validation plus a few parameters to support partitioning. Single and multiple primary keys are supported and keys can be of any indexable type, except for date and timestamp type. You can specify tables that are being validated or the source and target custom query. A parameter used in earlier versions, partition-key is no longer supported.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  generate-table-partitions
  --source-conn or -sc SOURCE_CONN
                        Source connection details
                        See: *Data Source Configurations* section for each data source
  --target-conn or -tc TARGET_CONN
                        Target connection details
                        See: *Connections* section for each data source
  --tables-list or -tbls SOURCE_SCHEMA.SOURCE_TABLE=TARGET_SCHEMA.TARGET_TABLE
                        Comma separated list of tables in the form schema.table=target_schema.target_table
                        Target schema name and table name are optional.
                        i.e 'bigquery-public-data.new_york_citibike.citibike_trips'
                        Either --tables-list or --source-query (or file) and --target-query (or file) must be provided
  --source-query SOURCE_QUERY, -sq SOURCE_QUERY
                        Source sql query
                        Either --tables-list or --source-query (or file) and --target-query (or file) must be provided
  --source-query-file  SOURCE_QUERY_FILE, -sqf SOURCE_QUERY_FILE
                        File containing the source sql command. Supports GCS and local paths.
  --target-query TARGET_QUERY, -tq TARGET_QUERY
                        Target sql query
                        Either --tables-list or --source-query (or file) and --target-query (or file) must be provided
  --target-query-file TARGET_QUERY_FILE, -tqf TARGET_QUERY_FILE
                        File containing the target sql command. Supports GCS and local paths.
  --comparison-fields or -comp-fields FIELDS
                        Comma separated list of columns to compare. Can either be a physical column or an alias
                        See: *Calculated Fields* section for details
  --hash COLUMNS        Comma separated list of columns to hash or * for all columns
  --concat COLUMNS      Comma separated list of columns to concatenate or * for all columns (use if a common hash function is not available between databases)
  --config-dir CONFIG_DIR, -cdir CONFIG_DIR
                        Directory Path to store YAML Config Files
                        GCS: Provide a full gs:// path of the target directory. Eg: `gs://<BUCKET>/partitions_dir`
                        Local: Provide a relative path of the target directory. Eg: `partitions_dir`
                        If invoked with -tbls parameter, the validations are stored in a directory named <schema>.<table>, otherwise the directory is named `custom.<random_string>`
  --partition-num INT, -pn INT
                        Number of partitions into which the table should be split, e.g. 1000 or 10000
                        In case this value exceeds the row count of the source/target table, it will be decreased to max(source_row_count, target_row_count)
  [--primary-keys PRIMARY_KEYS, -pk PRIMARY_KEYS]
                        Comma separated list of primary key columns, when not specified the value will be inferred
                        from the source or target table if available.  See *Primary Keys* section
  [--result-handler or -rh CONNECTION_NAME.SCHEMA.TABLE or BQ_PROJECT_ID.DATASET.TABLE]
                        Specify a BigQuery or PostgreSQL connection name as destination for validation results.
                        Also supports legacy BigQuery format BQ_PROJECT_ID.DATASET.TABLE.
                        See: *Validation Reports* section
  [--bq-result-handler or -bqrh PROJECT_ID.DATASET.TABLE or CONNECTION_NAME.DATASET.TABLE]
                        This option has been deprecated and will be removed in a future release.
  [--service-account or -sa PATH_TO_SA_KEY]
                        Service account to use for BigQuery result handler output.
  [--parts-per-file INT], [-ppf INT]
                        Number of partitions in a yaml file, default value 1.
  [--filters SOURCE_FILTER:TARGET_FILTER]
                        Colon separated string values of source and target filters.
                        If target filter is not provided, the source filter will run on source and target tables.
                        See: *Filters* section
  [--labels or -l KEY1=VALUE1,KEY2=VALUE2]
                        Comma-separated key value pair labels for the run.
  [--format or -fmt FORMAT]
                        Format for stdout output. Supported formats are (text, csv, json, table). Defaults to table.
  [--filter-status or -fs STATUSES_LIST]
                        Comma separated list of statuses to filter the validation results. Supported statuses are (success, fail). If no list is provided, all statuses are returned.
  [--case-insensitive-match, -cim]
                        Performs a case insensitive match by adding an UPPER() before comparison.

Schema Validations

Below is the syntax for schema validations. These can be used to compare case insensitive column names and types between source and target.

Note: An exclamation point before a data type (!string) signifies the column is non-nullable or required.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  validate schema
  --source-conn or -sc SOURCE_CONN
                        Source connection details
                        See: *Data Source Configurations* section for each data source
  --target-conn or -tc TARGET_CONN
                        Target connection details
                        See: *Connections* section for each data source
  --tables-list or -tbls SOURCE_SCHEMA.SOURCE_TABLE=TARGET_SCHEMA.TARGET_TABLE
                        Comma separated list of tables in the form schema.table=target_schema.target_table. Or shorthand schema.* for all tables.
                        Target schema name and table name are optional.
                        e.g.: 'bigquery-public-data.new_york_citibike.citibike_trips'
  [--result-handler or -rh CONNECTION_NAME.SCHEMA.TABLE or BQ_PROJECT_ID.DATASET.TABLE]
                        Specify a BigQuery or PostgreSQL connection name as destination for validation results.
                        Also supports legacy BigQuery format BQ_PROJECT_ID.DATASET.TABLE.
                        See: *Validation Reports* section
  [--bq-result-handler or -bqrh PROJECT_ID.DATASET.TABLE or CONNECTION_NAME.DATASET.TABLE]
                        This option has been deprecated and will be removed in a future release.
  [--service-account or -sa PATH_TO_SA_KEY]
                        Service account to use for BigQuery result handler output.
  [--config-file or -c CONFIG_FILE]
                        YAML Config File Path to be used for storing validations and other features. Supports GCS and local paths.
                        See: *Running DVT with YAML Configuration Files* section
  [--config-file-json or -cj CONFIG_FILE_JSON]
                        JSON Config File Path to be used for storing validations only for application purposes.
  [--format or -fmt]    Format for stdout output. Supported formats are (text, csv, json, table).
                        Defaults  to table.
  [--filter-status or -fs STATUSES_LIST]
                        Comma separated list of statuses to filter the validation results. Supported statuses are (success, fail).
                        If no list is provided, all statuses are returned.
  [--exclusion-columns or -ec EXCLUSION_COLUMNS]
                        Comma separated list of columns to be excluded from the schema validation, e.g.: col_a,col_b.
  [--allow-list or -al ALLOW_LIST]
                        Comma separated list of data-type mappings of source and destination data sources which will be validated in case of missing data types in destination data source. e.g: "decimal(4,2):decimal(5,4),!string:string"
  [--allow-list-file ALLOW_LIST_FILE, -alf ALLOW_LIST_FILE]
                        YAML file containing default --allow-list mappings. Can be used in conjunction with --allow-list.
                        e.g.: samples/allow_list/oracle_to_bigquery.yaml or gs://dvt-allow-list-files/oracle_to_bigquery.yaml
                        See example files in samples/allow_list/.

Custom Query Column Validations

Below is the command syntax for custom query column validations.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  validate custom-query column
  --source-conn or -sc SOURCE_CONN
                        Source connection details
                        See: *Data Source Configurations* section for each data source
  --target-conn or -tc TARGET_CONN
                        Target connection details
                        See: *Connections* section for each data source
  --source-query SOURCE_QUERY, -sq SOURCE_QUERY
                        Source sql query
                        Either --source-query or --source-query-file must be provided
  --source-query-file  SOURCE_QUERY_FILE, -sqf SOURCE_QUERY_FILE
                        File containing the source sql command. Supports GCS and local paths.
  --target-query TARGET_QUERY, -tq TARGET_QUERY
                        Target sql query
                        Either --target-query or --target-query-file must be provided
  --target-query-file TARGET_QUERY_FILE, -tqf TARGET_QUERY_FILE
                        File containing the target sql command. Supports GCS and local paths.
  [--count COLUMNS]     Comma separated list of columns for count or * for all columns
  [--sum COLUMNS]       Comma separated list of columns for sum or * for all numeric
  [--min COLUMNS]       Comma separated list of columns for min or * for all numeric
  [--max COLUMNS]       Comma separated list of columns for max or * for all numeric
  [--avg COLUMNS]       Comma separated list of columns for avg or * for all numeric
  [--std COLUMNS]       Comma separated list of columns for stddev_samp or * for all numeric.
                        Please note that not all supported SQL engines give results from STDDV_SAMP (or engine specific equivalent) that
                        are comparable across all other supported SQL engines. This option may produce unreliable results.
  [--exclude-columns or -ec]
                        Flag to indicate the list of columns provided should be excluded and not included.
  [--result-handler or -rh CONNECTION_NAME.SCHEMA.TABLE or BQ_PROJECT_ID.DATASET.TABLE]
                        Specify a BigQuery or PostgreSQL connection name as destination for validation results.
                        Also supports legacy BigQuery format BQ_PROJECT_ID.DATASET.TABLE.
                        See: *Validation Reports* section
  [--bq-result-handler or -bqrh PROJECT_ID.DATASET.TABLE or CONNECTION_NAME.DATASET.TABLE]
                        This option has been deprecated and will be removed in a future release.
  [--service-account or -sa PATH_TO_SA_KEY]
                        Service account to use for BigQuery result handler output.
  [--config-file or -c CONFIG_FILE]
                        YAML Config File Path to be used for storing validations and other features. Supports GCS and local paths.
                        See: *Running DVT with YAML Configuration Files* section
  [--config-file-json or -cj CONFIG_FILE_JSON]
                        JSON Config File Path to be used for storing validations only for application purposes.
  [--labels or -l KEY1=VALUE1,KEY2=VALUE2]
                        Comma-separated key value pair labels for the run.
  [--format or -fmt FORMAT]
                        Format for stdout output. Supported formats are (text, csv, json, table). Defaults to table.
  [--filter-status or -fs STATUSES_LIST]
                        Comma separated list of statuses to filter the validation results. Supported statuses are (success, fail). If no list is provided, all statuses are returned.

The default aggregation type is a 'COUNT *'. If no aggregation flag (i.e count, sum , min, etc.) is provided, the default aggregation will run.

The Examples page provides few examples of how this tool can be used to run custom query validations.

Custom Query Row Validations

(Note: Custom query row validation is not supported for FileSystem connections. Struct and array data types are not currently supported.)

Below is the command syntax for row validations. In order to run row level validations you need to pass --hash flag which will specify the fields of the custom query result that will be concatenated and hashed. The primary key should be included in the SELECT statement of both source_query.sql and target_query.sql. See Primary Keys section

Below is the command syntax for custom query row validations.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  validate custom-query row
  --source-conn or -sc SOURCE_CONN
                        Source connection details
                        See: *Data Source Configurations* section for each data source
  --target-conn or -tc TARGET_CONN
                        Target connection details
                        See: *Connections* section for each data source
  --source-query SOURCE_QUERY, -sq SOURCE_QUERY
                        Source sql query
                        Either --source-query or --source-query-file must be provided
  --source-query-file SOURCE_QUERY_FILE, -sqf SOURCE_QUERY_FILE
                        File containing the source sql command. Supports GCS and local paths.
  --target-query TARGET_QUERY, -tq TARGET_QUERY
                        Target sql query
                        Either --target-query or --target-query-file must be provided
  --target-query-file TARGET_QUERY_FILE, -tqf TARGET_QUERY_FILE
                        File containing the target sql command. Supports GCS and local paths.
  --comparison-fields or -comp-fields FIELDS
                        Comma separated list of columns to compare. Can either be a physical column or an alias
                        See: *Calculated Fields* section for details
  --hash '*'            '*' to hash all columns.
  --concat COLUMNS      Comma separated list of columns to concatenate or * for all columns
                        (use if a common hash function is not available between databases)
  --max-concat-columns INT, -mcc INT
                        Maximum number of columns used in one --hash or --concat validation. When there are more columns in the validation, the validation will be split into multiple validations. There are engine specific defaults, so most users do not need to use this option unless they encounter errors.
  [--primary-keys PRIMARY_KEYS, -pk PRIMARY_KEYS]
                       Common column between source and target queries for join
  [--exclude-columns or -ec]
                        Flag to indicate the list of columns provided should be excluded from hash or concat instead of included.
  [--result-handler or -rh CONNECTION_NAME.SCHEMA.TABLE or BQ_PROJECT_ID.DATASET.TABLE]
                        Specify a BigQuery or PostgreSQL connection name as destination for validation results.
                        Also supports legacy BigQuery format BQ_PROJECT_ID.DATASET.TABLE.
                        See: *Validation Reports* section
  [--bq-result-handler or -bqrh PROJECT_ID.DATASET.TABLE or CONNECTION_NAME.DATASET.TABLE]
                        This option has been deprecated and will be removed in a future release.
  [--service-account or -sa PATH_TO_SA_KEY]
                        Service account to use for BigQuery result handler output.
  [--config-file or -c CONFIG_FILE]
                        YAML Config File Path to be used for storing validations and other features. Supports GCS and local paths.
                        See: *Running DVT with YAML Configuration Files* section
  [--config-file-json or -cj CONFIG_FILE_JSON]
                        JSON Config File Path to be used for storing validations only for application purposes.
  [--labels or -l KEY1=VALUE1,KEY2=VALUE2]
                        Comma-separated key value pair labels for the run.
  [--format or -fmt FORMAT]
                        Format for stdout output. Supported formats are (text, csv, json, table). Defaults to table.
  [--filter-status or -fs STATUSES_LIST]
                        Comma separated list of statuses to filter the validation results. Supported statuses are (success, fail). If no list is provided, all statuses are returned.
  [--case-insensitive-match, -cim]
                        Performs a case insensitive match by adding an UPPER() before comparison.

The Examples page provides few examples of how this tool can be used to run custom query row validations.

Dry Run Validation

The validate command takes a --dry-run command line flag that prints source and target SQL to stdout as JSON in lieu of performing a validation:

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  validate
  [--dry-run or -dr]    Prints source and target SQL to stdout in lieu of performing a validation.

For example, this flag can be used as follows:

> data-validation validate --dry-run row \
  -sc my_bq_conn \
  -tc my_bq_conn \
  -tbls bigquery-public-data.new_york_citibike.citibike_stations \
  --primary-keys station_id \
  --hash '*'
{
    "source_query": "SELECT `hash__all`, `station_id`\nFROM ...",
    "target_query": "SELECT `hash__all`, `station_id`\nFROM ..."
}

Running DVT at on-prem

On-premises environments can have limited access to GCP services. DVT supports using BigQuery for storing validation results, GCS for storage and the Secret Manager for secrets. You may also use BigQuery and Spanner as a source or target for validation. Service APIs (i.e. bigquery.googleapis.com) may not always be accessible due to firewall restrictions. Work with your network adminstrator to identify the way to access these services. They may set up a Private Service Connect Endpoint. DVT supports accessing source and target tables in Spanner and BigQuery via endpoints set up in your network. Connection Parameters for Spanner and BigQuery outline regarding how to specify endpoints.

Running DVT with YAML Configuration Files

Running DVT with YAML configuration files is the recommended approach if:

  • you want to customize the configuration for any given validation OR
  • you want to run DVT at scale (i.e. run multiple validations sequentially or in parallel)

We recommend generating YAML configs with the --config-file <file-name> flag when running a validation command, which supports GCS and local paths.

You can use the data-validation configs command to run and view YAMLs.

data-validation
  [--verbose or -v ]
                        Verbose logging
  [--log-level or -ll]
                        Log Level to be assigned. Supported levels are (DEBUG,INFO,WARNING,ERROR,CRITICAL). Defaults to INFO.
  configs run
  [--config-file or -c CONFIG_FILE]
                        Path to YAML config file to run. Supports local and GCS paths.
  [--config-dir or -cdir CONFIG_DIR]
                        Directory path containing YAML configs to be run sequentially. Supports local and GCS paths.
  [--dry-run or -dr]    If this flag is present, prints the source and target SQL generated in lieu of running the validation.
  [--kube-completions or -kc]
                        Flag to indicate usage in Kubernetes index completion mode.
                        See *Scaling DVT* section
data-validation configs list
  [--config-dir or -cdir CONFIG_DIR]
                        GCS or local directory from which to list validation YAML configs. Defaults to current local directory.
data-validation configs get
  [--config-file or -c CONFIG_FILE] GCS or local path of validation YAML to print.

View the complete YAML file for a Grouped Column validation on the Examples page.

Scaling DVT

You can scale DVT for large validations by running the tool in a distributed manner. To optimize the validation speed for large tables, you can use GKE Jobs (Google Kubernetes Jobs) or Cloud Run Jobs. If you are not familiar with Kubernetes or Cloud Run Jobs, see Scaling DVT with Distributed Jobs for a detailed overview.

We recommend first generating partitions with the generate-table-partitions command for your large datasets (tables or queries). Then, use Cloud Run or GKE to distribute the validation of each chunk in parallel. See the Cloud Run Jobs Quickstart sample to get started.

When running DVT in a distributed fashion, both the --kube-completions and --config-dir flags are required. The --kube-completions flag specifies that the validation is being run in indexed completion mode in Kubernetes or as multiple independent tasks in Cloud Run. If the -kc option is used and you are not running in indexed mode, you will receive a warning and the container will process all the validations sequentially. If the -kc option is used and a config directory is not provided (i.e. a --config-file is provided instead), a warning is issued.

The --config-dir flag will specify the directory with the YAML files to be executed in parallel. If you used generate-table-partitions to generate the YAMLs, this would be the directory where the partition files numbered 0000.yaml to <partition_num - 1>.yaml are stored i.e (gs://my_config_dir/source_schema.source_table/). When creating your Cloud Run Job, set the number of tasks equal to the number of table partitions so the task index matches the YAML file to be validated. When executed, each Cloud Run task will validate a partition in parallel.

Validation Reports

The result handlers tell DVT where to store the results of each validation. The tool can write the results of a validation run to Google BigQuery, PostgreSQL or print to stdout (default). View the schema of the results table here.

To output to BigQuery or PostgreSQL, simply include the -rh flag during a validation run including the schema and table name for the results.

BigQuery example by connection name:

data-validation validate column \
  -sc bq_conn \
  -tc bq_conn \
  -tbls bigquery-public-data.new_york_citibike.citibike_trips \
  -rh bq_conn.dataset.results_table \
  -sa 'service-acct@project.iam.gserviceaccount.com'

BigQuery example by project name:

data-validation validate column \
  -sc bq_conn \
  -tc bq_conn \
  -tbls bigquery-public-data.new_york_citibike.citibike_trips \
  -rh bq-project-id.dataset.results_table \
  -sa 'service-acct@project.iam.gserviceaccount.com'

PostgreSQL example:

data-validation validate column \
  -sc ora_conn \
  -tc pg_conn1 \
  -tbls my_schema.some_table \
  -rh pg_conn2.dvt_schema.results_table

Ad Hoc SQL Exploration

There are many occasions where you need to explore a data source while running validations. To avoid the need to open and install a new client, the CLI allows you to run ad hoc queries.

data-validation query
  --conn or -c CONN
          The connection name to be queried
  --query or -q QUERY
          The raw query to run against the supplied connection
  [--format or -f {minimal,python}]
          Format for query output (default: python)

Building Matched Table Lists

Creating the list of matched tables can be a hassle. We have added a feature which may help you to match all of the tables together between source and target. The find-tables command:

  • Pulls all tables in the source (applying a supplied allowed-schemas filter)
  • Pulls all tables from the target
  • Uses Jaro Similarity algorithm to match tables
  • Finally, it prints a JSON list of tables which can be a reference for the validation run config.

Note that our default value for the score-cutoff parameter is 1 and it seeks for identical matches. If no matches occur, reduce this value as deemed necessary. By using smaller numbers such as 0.7, 0.65 etc you can get more matches. For reference, we make use of this jaro_similarity method for the string comparison.

data-validation find-tables --source-conn source --target-conn target \
    --allowed-schemas pso_data_validator \
    --score-cutoff 1

Using Beta CLI Features

There may be occasions we want to release a new CLI feature under a Beta flag. Any features under Beta may or may not make their way to production. However, if there is a Beta feature you wish to use than it can be accessed using the following.

data-validation beta --help

[Beta] Deploy Data Validation as a Local Service

If you wish to use Data Validation as a Flask service, the following command will help. This same logic is also expected to be used for Cloud Run, Cloud Functions, and other deployment services.

data-validation beta deploy

Validation Logic

Aggregated Fields

Aggregate fields contain the SQL fields that you want to produce an aggregate for. Currently the functions COUNT(), AVG(), SUM(), MIN(), MAX(), and STDDEV_SAMP() are supported.

Here is a sample aggregate config:

validations:
- aggregates:
    - field_alias: count
    source_column: null
    target_column: null
    type: count
    - field_alias: count__tripduration
    source_column: tripduration
    target_column: tripduration
    type: count
    - field_alias: sum__tripduration
    source_column: tripduration
    target_column: tripduration
    type: sum

If you are aggregating columns with large values, you can CAST() before aggregation with calculated fields as shown in this example.

Filters

Filters let you apply a WHERE statement to your validation query (ie. SELECT * FROM table WHERE created_at > 30 days ago AND region_id = 71;). The filter is written in the syntax of the given source and must reference columns in the underlying table, not projected DVT expressions.

Note that you are writing the query to execute, which does not have to match between source and target as long as the results can be expected to align. If the target filter is omitted, the source filter will run on both the source and target tables.

Primary Keys

In many cases, validations (e.g. count, min, max etc) produce one row per table. The comparison between the source and target table is to compare the value for each column in the source with the value of the column in the target. grouped-columns validation and validate row produce multiple rows per table. Data Validation Tool needs one or more columns to uniquely identify each row so the source and target can be compared. Data Validation Tool refers to these columns as primary keys. These do not need to be primary keys in the table. The only requirement is that the keys uniquely identify the row in the results.

These columns are inferred, where possible, from the source/target table or can be provided via the --primary-keys flag.

Grouped Columns

Grouped Columns contain the fields you want your aggregations to be broken out by, e.g. SELECT last_updated::DATE, COUNT(*) FROM my.table will produce a resultset that breaks down the count of rows per calendar date.

Hash, Concat, and Comparison Fields

Row level validations can involve either a hash/checksum, concat, or comparison fields. A hash validation (--hash '*') will first sanitize the data with the following operations on all or selected columns: CAST to string, IFNULL replace with a default replacement string and RSTRIP. Then, it will CONCAT() the results and run a SHA256() hash and compare the source and target results.

When there are data type mismatches for columns, for example dates compared to timestamps and booleans compared with numeric columns, you may see other expressions in SQL statements which ensure that consistent values are used to build comparison values.

Since each row will be returned in the result set if is recommended recommended to validate a subset of the table. The --filters and --use-random-row options can be used for this purpose.

Please note that SHA256 is not a supported function on Teradata systems. If you wish to perform this comparison on Teradata you will need to deploy a UDF to perform the conversion.

The concat validation (--concat '*') will do everything up until the hash. It will sanitize and concatenate the specified columns, and then value compare the results.

Comparison field validations (--comp-fields column) involve an value comparison of the column values. These values will be compared via a JOIN on their corresponding primary key and will be evaluated for an exact match.

See hash and comparison field validations in the Examples page.

Calculated Fields

Sometimes direct comparisons are not feasible between databases due to differences in how particular data types may be handled. These differences can be resolved by applying functions to columns in the query itself. Examples might include trimming whitespace from a string, converting strings to a single case to compare case insensitivity, or rounding numeric types to a significant figure.

Once a calculated field is defined, it can be referenced by other calculated fields at any "depth" or higher. Depth controls how many subqueries are executed in the resulting query. For example, with the following YAML config:

- calculated_fields:
    - field_alias: rtrim_col_a
      source_calculated_columns: ['col_a']
      target_calculated_columns: ['col_a']
      type: rtrim
      depth: 0 # generated off of a native column
    - field_alias: ltrim_col_a
      source_calculated_columns: ['col_b']
      target_calculated_columns: ['col_b']
      type: ltrim
      depth: 0 # generated off of a native column
    - field_alias: concat_col_a_col_b
      source_calculated_columns: ['rtrim_col_a', 'ltrim_col_b']
      target_calculated_columns: ['rtrim_col_a', 'ltrim_col_b']
      type: concat
      depth: 1 # calculated one query above

is equivalent to the following SQL query:

SELECT
  CONCAT(rtrim_col_a, rtrim_col_b) AS concat_col_a_col_b
FROM (
  SELECT
      RTRIM(col_a) AS rtrim_col_a
    , LTRIM(col_b) AS ltrim_col_b
  FROM my.table
  ) as table_0

If you generate the config file for a row validation, you can see that it uses calculated fields to generate the query. You can also use calculated fields in column level validations to generate the length of a string, or cast a INT field to BIGINT for aggregations.

See the Examples page for a sample cast to NUMERIC.

Custom Calculated Fields

DVT supports certain functions required for row hash validation natively (i.e. CAST() and CONCAT()), which are listed in the CalculatedField() class methods in the QueryBuilder.

You can also specify custom functions (i.e. replace() or truncate()) from the Ibis expression API reference. Keep in mind these will run on both source and target systems. You will need to specify the Ibis API expression and the parameters required, if any, with the 'params' block as shown below:

- calculated_fields:
  - depth: 0
    field_alias: format_start_time
    source_calculated_columns:
    - start_time
    target_calculated_columns:
    - start_time
    type: custom
    ibis_expr: ibis.expr.types.TemporalValue.strftime
    params:
    - format_str: '%m%d%Y'

The above block references the TemporalValue.strftime Ibis API expression. See the Examples page for a sample YAML with a custom calculated field.

Contributing

Contributions are welcome. See the Contributing guide for details.

About

Utility to compare data between homogeneous or heterogeneous environments to ensure source and target tables match

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

头痛到医院挂什么科 以马内利是什么意思 澍在人名中读什么 脚底肿是什么原因引起的 什么是共产主义社会
腰肌劳损贴什么膏药 什么是疣图片 红得什么 来曲唑片是什么药 什么样的轮子只转不走
hpr是什么意思 女人梦见鞋子什么预兆 刹那芳华是什么意思 全套半套什么意思 燃眉之急是什么意思
深圳到香港需要办理什么手续 什么是再生纤维面料 2006年属狗的是什么命 狗狗假孕是什么症状 甲减对胎儿有什么影响
小叶增生和乳腺增生有什么区别shenchushe.com 非典是什么hcv7jop7ns0r.cn 2017年属鸡火命缺什么520myf.com 利湿是什么意思hcv8jop4ns9r.cn 抗生素是什么luyiluode.com
什么三什么四hcv7jop9ns1r.cn 五月十七是什么星座hcv9jop6ns2r.cn 小211是什么意思hcv8jop0ns3r.cn 睾丸上长毛意味着什么imcecn.com 高知是什么意思hcv7jop7ns1r.cn
打乙肝疫苗需要注意什么hcv8jop2ns5r.cn 误食干燥剂有什么危害hcv9jop0ns9r.cn 文王卦是什么意思hcv8jop6ns6r.cn 夜宵和宵夜有什么区别hcv8jop3ns8r.cn 瘦的快是什么原因hcv9jop0ns0r.cn
神经衰弱有什么症状hcv7jop5ns1r.cn 梦见母亲去世预示什么hcv7jop9ns2r.cn swag什么意思cl108k.com 甘是什么意思hcv8jop8ns6r.cn 米其林什么意思hcv7jop5ns5r.cn
百度